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* ML Introduction & Fun Facts

* ML for classification: overview & drawbacks for survival analysis
* ML methods for survival: overview & benefits

* Limitations of current ML survival methods



ML Evolution Over the Years

o ®
QUANT
INSTI

FORLED

1950
Alan Turing created a 1 95? 1 9?9
test to check if a First neural network for computers o
machine could fool a (the perceptron) was invented by Students of Stanford University, 2002
human being into Frank Rosenblatt, which simulated California, invented the Stanford ) ) )
believing it -.um-.8 talking the thought processes of the human Cart which could navigate and A software library for Machine Leamning,

to a machine, brain. avoid obstacles on its own. named Torch is first released,

) SR

1952 1967 1997 2016
The first computer learmning The Nearest Neighbor IBM's Deep Blue beats the world AlphaGo algorithm developed
program, a game of Algorithm was written. champion at Chess. by Google DeepMind managed
checkers, was written by to win five games out of five in
Arthur Samuel, the Chinese Board Game Go

competition.




ML Interest Over Time Since 2010 (Google
Trends)




ML-related papers on arXiv from 1990-2018:
* 16,625 papers in total up to 2018
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Chart MIT Technology Review - Source: arXiv.org - Created with Datawrapper



ML is now everywhere...

@ Smart Homes

Stock Market
Trading

Internet, IT

des & icons at www.infoDiagram.com



Three ‘Pillars’ of Learning:
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https://www.slideshare.net/awahid/big-data-and-machine-learning-for-businesses
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Supervised:
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endotype: a prospective cohort study
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Reinforcement:
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Supervised Learning Classifiers Used as Risk
Prediction/Stratification Models

* At a certain time point (i.e: ICU discharge, 10-year follow-up), map y=
f(x)

* Report AUC, sens, spec, PPV, NPV

* Exclude samples without a ‘label’




Classifiers as Risk Prediction?

* A lot of papers use classifiers for dynamic risk prediction (aka ‘early
warning model’)

* Time-window approach

* Myriad packages and online resources for ‘plug and play’ ML
classification and regression methods (i.e: caret, mlr, scikit-learn)

Data-driven discovery of a novel

Early diagnosis of bloodstream sepsis pre_shock state predicts
infections in the intensive care unit using

machine-learning algorithms iImpending septic shock in the ICU

Research article | Open Access | Open Peer Review | Published: 29 December 2018
Machine learning methodologies versus
cardiovascular risk scores, in predicting disease risk



Are ML Classifiers or Regressors Suitable for
Survival Analysis?

—_ 0
(W] .
Y]
—.
- e}
wn
oY |l—_—_—m
L
oo 4
P
— O
> ®
= 0
= |

1 2 3 45 6 7 8 9 10 11 12
Time

Ping Wang, Yan Li, Chandan, K. Reddy, “Machine Learning for Survival
Analysis: A Survey”. ACM Computing Surveys (under revision), 2017.

Classification Problem:
3 +ve and 7 -ve
Cannot predict the time of event

Need to re-train for each time

Regression Problem:
Can predict the time of event
Only 3 samples (not 10)

— loss of data

B - Death
@ - Dropout/Censored

<] = Other Events

based approach time
based approach time

P. Zheng, S. Yuan, and X. Wu, “SAFE: A Neural Survival
Analysis Model for Fraud Early Detection,” 2018.
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Motivations for the birth of ML survival:

e ML Classifiers are not good enough

* Traditional statistical survival methods are also not good enough with
their assumptions:

h(t)=h,(t)exp(B,x., + B.x, +....... +0 x. )
Proportional hazards: constant hazard ratio over time
Each covariate contribute linearly to the model

Each covariate is independent of each other
Do not converge for high number of covariates

> w N e



ML survival methods could overcome Cox’s
limitations:

1. Proportional hazards: constant hazard ratio over time = flexible

2. Each covariate contribute linearly to the model = allow for complex, non-
linear relationships among covariates

3. Each covariate is independent of each other = less susceptible to
correlated covariates

4. Do not converge for high number of covariates = can handle hundreds,
thousands of covariates. Could be used as feature selection method or
dimensionality reduction method



Overview of ML Survival Methods:

Most are adaptations of ML Classifiers
* Tree-based

* Boosting

e Support Vector Machine

* Bayesian-based

* Deep Learning/Neural Networks



Overview of ML Survival Methods:

Most are adaptations of ML Classifiers
* Tree-based

* Boosting

e Support Vector Machine

* Bayesian-based

* Deep Learning/Neural Networks



Tree-based Survival Methods:
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Tree-based Survival Methods:

Many trees together (majority vote — Yay

to democracy!): lnputdata

\

e Random Survival Forest Tree 1 Treez Tree N
(randomForestSRC)
e Conditional-Inference Forest

( cFore St) Output 1 Output 2 Output N

« RF-SLAM _—

Majorlty decision or Arithmetic average

H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer, “Random survival forests,” Ann. Appl. Stat., 2008.

T. Hothorn, K. Hornik, and A. Zeileis, “Unbiased recursive partitioning: A conditional inference framework,” J. Comput.
Graph. Stat., 2006.

S. Wongyvibulsin, K. C. Wu, and S. L. Zeger, “Clinical risk prediction with random forests for survival, longitudinal, and
multivariate (RF-SLAM) data analysis,” BMC Med. Res. Methodol., vol. 20, no. 1, pp. 1-14, 2019.



Overview of ML Survival Methods:

* Tree-based

* Boosting

e Support Vector Machine

* Bayesian-based

* Deep Learning/Neural Networks



Boosting:
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https://medium.com/greyatom/a-quick-guide-to-boosting-in-ml-acf7c1585cb5

Boosting:

Gradient Boosting Machine (gbm)

Boosting Concordance Index (Github GBMCI, BoostCl)
Generalized Linear Model Boosting (GImBoost)
Multivariate boosting for longitudinal data

First Hitting Time Model For XGBoost (Github HitBoost)

G. Ridgeway, “The state of boosting,” Comput. Sci. Stat., 1999.

Y. Chen, Z. Jia, D. Mercola, and X. Xie, “A Gradient Boosting Algorithm for Survival Analysis via Direct Optimization of Concordance
Index,” Comput. Math. Methods Med., vol. 2013, pp. 1-8, 2013.

A. Mayr, H. Binder, O. Gefeller, and M. Schmid, “The Evolution of Boosting Algorithms - From Machine Learning to Statistical Modelling,”
pp. 1-32, 2014.

P. Bihlmann, “Boosting for high-dimensional linear models,” Ann. Stat., 2006.

P. Liu, B. Fu, and S. X. Yang, “HitBoost: Survival Analysis via a Multi-Output Gradient Boosting Decision Tree Method,” IEEE Access, vol. 7,
pp. 56785-56795, 2019



Overview of ML Survival Methods:

* Support Vector Machine
* Bayesian-based
* Deep Learning/Neural Networks
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F. M. Khan and V. Bayer-Zubek, “Support vector regression for censored data (SVRc): A novel tool for survival analysis,” in Proceedings - IEEE
International Conference on Data Mining, ICDM, 2008.

V. Van Belle, K. Pelckmans, S. Van Huffel, and J. A. K. Suykens, “Support vector methods for survival analysis: A comparison between ranking and
regression approaches,” Artif. Intell. Med., 2011.

C.J. K. Fouodo, I. R. Konig, C. Weihs, A. Ziegler, and M. N. Wright, “Support vector machines for survival analysis with R,” R J., vol. 10, no. 1, pp. 412-423,
2018.

F. Kiaee, H. Sheikhzadeh, and S. Eftekhari Mahabadi, “Relevance Vector Machine for Survival Analysis,” IEEE Trans. Neural Networks Learn. Syst., vol. 27,



Overview of ML Survival Methods:

* Tree-based
* Boosting
e Support Vector Machine

* Deep Learning/Neural Networks



Class Prior Probability
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M. J. Fard, P. Wang, S. Chawla, and C. K. Reddy, “A Bayesian Perspective on Early Stage | o b -
Trans. Knowl. Data Eng., vol. 28, no. 12, pp. 3126-3139, 2016. _
Itching

C. T. Volinsky, D. Madigan, A. E. Raftery, and R. A. Kronmal, “Bayesian model averaging in proportional hazard models: Assessing the risk
of a stroke,” J. R. Stat. Soc. Ser. C Appl. Stat., 1997.

Bayesian + Accelerated Failure Time

P. J. G. Lisboa, H. Wong, P. Harris, and R. Swindell, “A Bayesian neural network approach for modelling censored data with an application
to prognosis after surgery for breast cancer,” Artif. Intell. Med., vol. 28, no. 1, pp. 1-25, 2003.



Overview of ML Survival Methods:

* Tree-based

* Boosting

e Support Vector Machine

* Bayesian-based

* Deep Learning/Neural Networks:
* For Structured Data
* For Image Data



Deep Learning Survival for structured data:

h, (x)
!
Cox-based: I Linear thmhlnatmn |
* Deeposury {— T T —

i | Fully-Connected Layer

* Cox-nnet

Discrete-time: |
* Nnet-survival :
* DeepHit | |____Fully-Conncoted Layer ] J
* Dynamic DeepHit T

Dropout Layer

Fully-Connected Laver

Dropout Layer

Fully-Connected Layer

J. L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger, “DeepSurv: Personalized treatment recommender system using a Cox
proportional hazards deep neural network,” BMC Med. Res. Methodol., vol. 18, no. 1, pp. 1-12, 2018.

T. Ching, X. Zhu, and L. X. Garmire, “Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data,” PLoS
Comput. Biol., vol. 14, no. 4, pp. 1-18, 2018.

M. F. Gensheimer and B. Narasimhan, “A scalable discrete-time survival model for neural networks,” PeerJ, vol. 2019, no. 1, pp. 1-19, 2019.

C. Lee, W. R. Zame, J. Yoon, and M. Van Der Schaar, “DeepHit: A deep learning approach to survival analysis with competing risks,” 32nd AAAI
CAnf Artif Intell AAAI 2012 nn 2214-9291 9019



Deep Learning Survival for Image Data:

* DeepConvSurv

 DeepConvSurv + clustering
for high resolution images

e 4-D survival for sequences of
MRI images

G. A. Bello et al., “Deep-learning cardiac motion analysis for human survival predicti
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X. Zhu, J. Yao, and J. Huang, “Deep convolutional neural network for survival analysis with patholog;é}é\; _|mages," Proc. - 2016 IEEE Int. Conf.
Bioinforma. Biomed. BIBM 2016, no. 1, pp. 544-547, 2017.

Lpybria = @

C. Zhao, X. Zhou, M. Mao, and P. Tang, “WSISA: Making Survival Prediction From Whole Slide Histopathological Images,” IEEE Access, vol. 2,

pp. 970-975, 2017.
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Limitations of state-of-the-art ML survival:

* Performance gain
* Interpretability

* Longitudinal data
* Recurrent events
* Competing risks
* Multi-modal data



Lack of comprehensively verified performance
gains
* In most papers: the gain in C-index or time-varying AUC only stay

within the 1 or 2% increase compared to the traditional methods

* Only compared their proposed method against two or three other
methods

* Very limited reports available that gather these methods together and
evaluate them on the same dataset(s).



Lack of interpretability

 Limited interpretability: there’s heatmap, but anything else?

* The belief that black-boxes are necessary to make good prediction is
not backed by evidence

C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,”

Nat. Mach. Intell., vol. 1, no. 5, pp. 206—-215, 2019.
EITHER YOU

HAVE A NEW
VIRUS OR MY

* Performance Gain vs. Complexity il

Trade-off




Lack of capability to handle longitudinal data

* Most covariates, such as biomarkers and risk factors, are repeatedly
collected over time

e Except for a few methods (RF-SLAM, Dynamic-DeepHit, RNN-SURV),
most ML methods only use the last available measurement,
discarding valuable information that could enhance accuracy, such as
evolution of covariates throughout the year



Lack of capability to deal with competing risks
and recurrent events

* Only DeepHit and RSF can deal with competing risks

* Only RF-SLAM addresses recurrent events, however it treats past
events quite simple

Ouilpul (softmax) Layer




Lack of capability to incorporate image data

* Performances of DeepConSurv and 4-D survival are still low

* Use Cox’s loss function =2 inherit Cox’s proportional hazards
assumption

* No method to-date that has been extended to integrate latent image
variables with structured data features such as demographics and

labs



Computational Time and Resources

More hyperparameters > exponential increase in runtime for
hyperparameter tuning, especially for advanced tuning methods (i.e.
Bayesian Optimization, Particle Swarm)

* RSF: ~5 hyperparam
* Boosting: ~7 hyperparam
* Neural Network Architecture: >12 hyperparam



Motivating example (part | of my thesis): Evaluating
performance of ML survival methods vs. Cox

Baseline Characteristics

Gender Education

https://www.cardia.dopm.uab.edu/



https://www.cardia.dopm.uab.edu/

Data and Outcome

* Year 5 (Exam 3) data was selected to predict disease onset (for now)

(Cross-sectional variables)
e 520 variables (including derived variables) (will see later)

e 245 CVD events by 2018



Workflow

Outer Loop Study
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MName

Coxph

AlC-Cox

LASS50-Cox

RS5F
Cforest

CoxBoost

Gbm
Glmboost

Cox-nnet
DeepSurv
Nnet-

Survival
DeepHit

Description

Cox proportional hazard®

Akaike Information Criterion for Cox
regression®*

Least absolute shrinkage and selection
operator (L1) for Cox regression®®

Random survival forest!l

Conditional inference survival forest'®
Component-wise likelihood-based
boosting for Cox!’

Gradient boosting machine®®

Gradient boosting with component-wise
linear model**

Cox proportional hazard adaptation to
neural network?®

Cox proportional hazard adaptation to
feed-forward neural network®!
Discrete-time deep learning approach for
survival analysis®?

Discrete-time deep learning approach for

survival analysis wih competing risks??

Package or Github

name (in R, asterisk if

in Python)
Survival
MASS

Glmnet
Rsfrc
Party

CoxBoost

Gbm
Mboost

*Cox-nnet®

*DeepSury®

*Nnet-survival*

*DeepHit?



Preliminary Results

C-index
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RSF with All Variables

Glmboost with top 20 RSF Variables
AIC-Cox with top 20 RSF Variables
ASCVD Risk Score



summaries

* There are growing interests in ML

* Many ML methods have been adapted for survival analysis that
could overcome limitations of the traditional statistical methods

e Still, the current ML methods have a number of limitations.
Further research studies and external validation /verification
studies are imperative.



Thank you for listening!

nnguye/78@jh.edu
inkedin.com/in/hieuhughnguyen

always welcome collaborations, feedbacks, opinions,

and ideas
EITHER YOU ‘@
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VIRUS OR MY
COMPUTER
DOES.




